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Abstract
As an end product of purine metabolism, uric acid (UA) is a major endogenous 
antioxidant in humans. However, impaired UA synthesis and excretion can lead 
to hyperuricemia (HUA), which may in turn induce endothelial dysfunction 
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1  |  INTRODUCTION

Cardiovascular disease (CVD) remains one of the leading 
causes of mortality in China and worldwide.1 According 
to a 2021 China cardiovascular disease report, CVD ac-
counted for more than 40% of all deaths in China in 2019.2 
To reduce the risk of CVD- related death and improve 
quality of life, many investigators have focused their stud-
ies on the pathogenesis and pathomechanism of CVD and 
searched for pharmacological targets against CVD, aim-
ing to establish an optimal therapeutic strategy to combat 
CVD. Recently, increasing evidence has indicated that en-
dothelial dysfunction (ED) plays an essential role in the 
pathogenesis of CVD, including hypertension, atheroscle-
rosis, arterial dissection, coronary artery disease (CAD), 
heart failure, atrial fibrillation, and pulmonary hyperten-
sion.3– 9 Therefore, targeting ED may be a promising strat-
egy for the prevention and treatment of CVD.10

In healthy endothelium tissues, a single layer of endo-
thelial cells (ECs) is overlaid with glycocalyx. ECs line the 
lumen of blood vessels and perform key regulatory roles 
in vascular function and homeostasis.11 ECs not only me-
diate oxygen and nutrient exchange between blood and 
perfused organs but also regulate vasoconstriction and 
vasodilation by synthetizing and releasing vasoactive fac-
tors, which include nitric oxide (NO), prostaglandin I2 
(PGI2), endothelin- 1 (ET- 1), thromboxane A2 (TXA2), and 
angiotensin II (Ang II).11 In addition, ECs inhibit platelet 

aggregation and inflammatory cell adhesion, preventing 
thrombosis and vascular inflammation.12,13 In parallel, an 
intact endothelial barrier separates medial smooth muscle 
cells (SMCs) from blood to prevent excessive SMC prolifer-
ation.14 In general, exposure to cardiovascular risk factors 
(e.g., smoking, hypertension, hyperlipidemia, hypercho-
lesterolemia, diabetes, and hypoxia) increases the risk of 
developing ED.15 As nonprofessional immune cells, ECs 
can be induced to produce proinflammatory factors and 
promote leukocyte recruitment and adhesion.16 Once 
stimulated, ECs switch from the resting state to the acti-
vated state, which results in thrombosis, vascular inflam-
mation, reduced NO release, and increased permeability, 
conditions that can eventually progress to ED.17

Uric acid (UA), a product of purine metabolism, is a 
major endogenous antioxidant in the body and regulates 
various biological processes.18 For instance, UA has been 
shown to protect neurons, maintain blood pressure sta-
bility, increase bone density, and induce type 2 immuni-
ty.19– 22 However, with changes in human diet and lifestyle 
over the past few decades, the prevalence of hyperuri-
cemia (HUA) has been increasing annually.23,24 To date, 
HUA has become another major cardiovascular risk fac-
tor in addition to the traditional “three- high” diseases, 
which refer to hypertension, hyperlipidemia, and hyper-
glycemia. Specifically, increasing UA synthesis and/or de-
creased renal urate excretion can lead to HUA, which is 
defined as serum UA (SUA) levels >7 mg/dL (420 μmol/L) 
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(ED) and contribute to the pathogenesis of cardiovascular diseases (CVDs; e.g., 
atherosclerosis and hypertension). In this review, we discuss recent advances 
and novel insights into the effects exerted by HUA conditions in ED and re-
lated underlying mechanisms focusing on impaired UA metabolism, reduction 
in the synthesis and bioavailability of nitric oxide, endothelial cell injury, the 
endothelial- to- mesenchymal transition, insulin resistance, procoagulant activity, 
and acquisition of an inflammatory phenotype. We additionally discuss interven-
tion strategies for HUA- induced ED and the paradoxical roles of UA in endothe-
lial function. We summarize major conclusions and perspectives: the deleterious 
effects of HUA contribute to the initiation and progression of CVD- related ED. 
However, the treatment strategies (in addition to urate- lowering therapy) for in-
creasing endothelial function are limited because the majority of literature on 
pharmacological and pathophysiological mechanisms underlying HUA- induced 
ED solely describes in vitro models. Therefore, a better understanding of the 
mechanisms involved in HUA- induced ED is critical to the development of novel 
therapies for preventing and treating CVD- HUA comorbidities.
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in males and 6 mg/dL (360 μmol/L) in females.25 HUA has 
been classified into symptomatic (e.g., gout and urolithi-
asis) and asymptomatic types based on clinical presenta-
tion. Most recent evidence supports the causal effect of 
HUA on CVD.26– 28 However, the contribution of soluble 
SUA to CVD risk for asymptomatic HUA is debated.29– 31 
Inconsistent conclusion may be attributed to the differ-
ences in sample sizes, study designs, and potential con-
founders in experiments. Therefore, it is challenging to 
clinically determine a definitive association between HUA 
and CVD physiopathology. Considering importance of ED 
in CVD onset and progression, we discuss recent advances 
and novel insights into the precise mechanisms underly-
ing the association between HUA and CVD- related ED.

2  |  UA METABOLISM AND ED

In humans, UA is primarily metabolized from endog-
enous purine degradation, with the remainder derived 
from the decomposition and absorption of digested food 
(Figure 1).18 In the liver, intestine, kidney, musculature, 
and vascular endothelium, purines are progressively 
transformed into hypoxanthine, xanthine, and UA by 
xanthine oxidoreductase (XOR) (Figure  1), which exists 
in two interconvertible forms: xanthine dehydrogenase 
(XDH) and xanthine oxidase (XO).32 Despite acting on the 
same substrates, XDH and XO catalyze the formation of 
UA and reactive oxygen species (ROS; mainly superoxide 
ions [O⋅−

2
] and hydrogen peroxide [H2O2]), respectively, 

the latter of which exerts dominant negative effects on 
redox balance.33 In addition, XOR catalyzes the reduction 
of nitrate to nitrite and acts as a nitrite reductase to reduce 

nitrite to NO.34 However, in response to oxidative stress 
stimuli, NO can react with O⋅−

2
 to generate peroxynitrite 

(ONOO−).35 In the presence of transition metal ions, O⋅−

2
 

reacts with H2O2 to produce hydroxyl radicals (•OH).36 
These metabolic reactions indicate that an increase in UA 
synthesis may concomitantly lead to excessive oxidative 
stress and diminished NO bioavailability.

UA is excreted mainly via the kidney and gastrointesti-
nal tract (Figure 1). At physiological pH (7.40), urate (the 
salt of UA) is the primary form of UA, and it is transported 
through the plasma membrane via transport proteins.37 
UA excretion is largely controlled by urate transporters 
expressed in epithelial cells that line kidney proximal 
tubules.38 Among these transporters, SLC22A12/URAT1 
(urate transporter 1), SLC2A9/GLUT9 (glucose trans-
porter 9), and SLC22A11/OAT4 (organic anion transporter 
4) mediate urate reabsorption, while SLC22A6/OAT1 (or-
ganic anion transporter 1), SLC22A8/OAT3 (organic anion 
transporter 3), SLC17A1/NPT1 (novel putative trans-
porter 1), SLC17A3/NPT4 (novel putative transporter 4), 
and ABCG2 (ATP- binding cassette superfamily G member 
2) are critical for urate secretion.39 In addition to renal tu-
bular epithelial cells, urate transporters are also expressed 
in ECs.40 Moreover, high concentrations of UA treatments 
in human umbilical vein endothelial cells (HUVECs) in-
crease GLUT9 expression while decrease the activity of 
ABCG2 (a UA efflux transporter),41– 43 resulting in intra-
cellular UA and ROS accumulation, ultimately leading to 
inflammation and oxidative stress (Figure 1). In contrast, 
blocking UA transport into ECs through the action of the 
organic anion transporter inhibitor probenecid arrests 
ED progression.44 This evidence suggests that controlling 
transporter- mediated cellular uptake and secretion of 

F I G U R E  1  Uric acid metabolism and its effect on endothelial function. Uric acid originates from endogenous purines and digested food, 
and its synthesis is catalyzed by xanthine oxidoreductase, which also produces reactive oxygen species as byproducts. Endothelial cells can 
express urate transporters including GLUT9 and ABCG2, the function of which is impaired under hyperuricemic conditions. ABCG2, ATP- 
binding cassette superfamily G member 2; GLUT9, glucose transporter 9; HUA, hyperuricemia; ROS, reactive oxygen species.
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urate contribute to the mechanism governing the occur-
rence and progression of ED.

3  |  MECHANISMS UNDERLYING 
HUA- INDUCED ED

3.1 | Decreased NO production

Decreased NO synthesis, release, and/or activity in ECs 
have been associated with the development of CVD.45 
NO, a highly reactive and gas diffusible free radical with 
potent vasodilatory, anti- inflammatory, and antioxidant 
properties, plays key roles in regulating vascular tone, 
angiogenesis, inflammatory cell adhesion, and platelet ag-
gregation.46 The biosynthesis of NO in ECs is catalyzed by 
endothelial nitric oxide synthase (eNOS).47 Under normal 
conditions, eNOS dimer formation is highly dependent on 
the binding of calcium ions (Ca2+) to calmodulin (CaM). 
In the presence of tetrahydrobiopterin, electrons from nic-
otinamide adenine dinucleotide phosphate (NADPH) are 
transferred to a heme prosthetic group through the actions 
of flavin adenine dinucleotide (FAD) and flavin mononu-
cleotide (FMN) and subsequently catalyze L- arginine and 
oxygen molecules (O2) to produce L- citrulline and NO.48 
However, in an uncoupled state, electrons are transferred 
directly from FAD and FMN to O2 to generate O⋅−

2
, which 

eventually binds with local NO to generate ONOO−.49 A 
high level of ONOO− is associated with the nitrosation or 
nitration of proteins, resulting in oxidative damage to cel-
lular components.50 Several mechanisms may contribute 
to HUA- induced decreases in endothelial NO production 

by promoting redox imbalance, reducing L- arginine sup-
ply, and inhibiting eNOS activity (Figure 2).

3.1.1 | Oxidative stress

Physiological concentrations of UA (in the normal value 
range) can inhibit ROS (including O⋅−

2
, H2O2, and ONOO−) 

in ECs.51 In contrast, high UA concentrations (≥600 μmol/L) 
increase ROS production, largely through mitochondrial 
respiratory chain action.51,52 Alternatively, NADPH oxi-
dases (NOXs) contribute to HUA- induced ED, thus serving 
other major sources of ROS.51,53 As membrane- bound en-
zyme complexes, NOXs reduce the conversion of O2 to O⋅−

2
 

via the NADPH- dependent electron transport pathway.54 
To date, seven NOX isoforms have been identified and char-
acterized: NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1, 
and DUOX2.53 Therein, aldose reductase (AR)- mediated 
NOX4 activation reduces NO release in ECs exposed to 
high concentrations of UA in vitro or in vivo in association 
with ROS production.51 Overall, high UA levels lead to mi-
tochondrial dysfunction and NOX4 activation and hence 
promote ECs to generate excessive ROS, which react fur-
ther with NO to produce ONOO−, ultimately inducing ED. 
NOX4 has been shown to be a mediator of CVD in elderly 
hyperlipidemic mice, and its expression correlates with 
age and atherosclerosis severity in humans.55 However, ex-
periments with atherosclerotic animal models have dem-
onstrated that endothelial NOX4 is atheroprotective.56– 58 
Thus, a more in- depth investigation is necessary to deter-
mine whether or not NOX4 is involved in atherosclerosis 
under hyperuricemic conditions.

F I G U R E  2  Decreased synthesis and bioavailability of endothelium- derived NO caused by hyperuricemia. Redox imbalance, reduced  
L- arginine supply, and eNOS inhibition contribute to decreasing NO production in the hyperuricemia context. ADMA, asymmetric 
dimethyl- L- arginine; CaM, calmodulin; Ca2+, calcium ions; DDAH2, dimethylarginine dimethylaminotransferase 2; eNOS, endothelial 
nitric oxide synthase; HUA, hyperuricemia; NO, nitric oxide; NOX4, nicotinamide adenine dinucleotide phosphate oxidase 4; ONOO−, 
peroxynitrite; O2, oxygen molecules; ROS, reactive oxygen species.
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3.1.2 | Inadequate L- arginine supply

In addition to acting as a substrate for endogenous NO 
production, L- arginine can be cleaved by arginase to form 
urea and L- ornithine in the urea cycle (also termed the 
ornithine cycle).59 High UA levels increase arginase activ-
ity in HUVECs and human pulmonary artery endothelial 
cells.60,61 Moreover, a rat model of pulmonary hyperten-
sion with HUA exhibits a greater pressor response, which 
can be attenuated by arginase inhibitors.61 As the natural 
homolog of L- arginine, asymmetric dimethyl- L- arginine 
(ADMA) mediates ED through the inhibition of eNOS 
activity. Under normal conditions, ADMA can be me-
tabolized to the less- active by product citrulline via the 
actions of dimethylarginine dimethylaminotransferase 
(DDAH)- 1 and DDAH- 2.62 However, the enzymatic ac-
tivities of DDAHs are compromised in the ECs of CVD 
patients, leading to increased ADMA levels and impaired 
NO synthesis. Recently, Lee et al.63 reported that high 
UA concentrations significantly increased the levels of 
ADMA in human aortic endothelial cells (HAECs) and 
the aorta of an ApoE−/− mouse model via the NOX/ROS 
pathway- mediated downregulation of DDAH- 2, thereby 
reducing NO production and intracellular cGMP (a sur-
rogate marker of NO production) level. The development 
of HUA leads to the inhibition of eNOS- catalyzed NO syn-
thesis owing to the stimulation of arginase activity and 
ADMA production.

3.1.3 | Inhibition of eNOS activity

No consensus has been reached on the mechanism by 
which eNOS activity is inhibited in the HUA context. 
Park et al.64 found that a high UA level impaired eNOS 
activity in HUVECs by inhibiting the interaction be-
tween eNOS and CaM without altering either the levels 
of intracellular calcium, CaM, and eNOS, or the phos-
phorylation of eNOS at three common activation sites 
(Ser1177, Thr495, and Ser114). These findings were 
partly supported by a report from Li et al.65 indicat-
ing that a high UA level did not significantly change 
the concentrations of intracellular calcium, CaM, and 
eNOS or the phosphorylation rate of eNOS (Ser1177) in 
HUVECs. However, opposite outcomes were reported 
between both studies. Li et al.65 indicated that at a high 
level, UA increased eNOS (Thr495) phosphorylation 
without influencing the interaction between eNOS and 
CaM. In addition, other studies demonstrated that UA 
at high levels induced the elevation of intracellular cal-
cium level or the reduction in eNOS content in HUVECs 
in a dose-  and time- dependent manner.66,67 The contra-
dictions among these observations may be results of 

different experimental conditions and differences in 
the execution of the study protocols. Therefore, further 
studies, especially with in vivo models, may be needed 
to clearly determine the effect and mechanism by which 
HUA alters eNOS activity.

3.2 | Stress- induced EC injury

Under pathophysiological conditions, the accumula-
tion of misfolded proteins in the endoplasmic reticulum 
(ER) triggers signaling cascades in the unfolded protein 
response (UPR) to restore ER homeostasis.68 However, 
prolonged UPR activation may induce cell death when 
the UPR cannot overcome the ER stress.69 In HUVECs 
stimulated with high UA levels, ER stress was con-
firmed to be activated by oxidative stress, and this out-
come was manifested by the increased expression of 
markers such as activating transcription factor 4 and 6 
(ATF4 and ATF6), C/EBP homologous protein (CHOP), 
caspase- 12, and eukaryotic translation initiation factor 
2 (eIF2A).65,70 Concomitantly, UA at a high level also 
promoted the expression of the nod- like receptor fam-
ily pyrin domain- containing 3 (NLRP3) inflammasome, 
which included NLRP3, apoptosis- associated speck- like 
protein containing a CARD (ASC), and pro- caspase- 1.70 
These findings suggest that ER stress functions as a 
bridge between environmental stimulation and the cel-
lular response in HUA- induced ED. Since caspase- 12 
and the NLRP3 inflammasome mediate apoptosis and 
pyroptosis, respectively, we speculate that both types of 
cell death contribute to HUA- induced EC injury. While 
EC injury disrupts the integrity of the vascular endothe-
lium, EC proliferation and migration are essential for 
endothelial repair but may lead to intimal thickening.71 
High concentrations of UA have been implicated in the 
enhanced proliferation and attenuated migration of 
ECs,72,73 indicating that HUA is associated with differ-
ent stages of CVD.

3.3 | The endothelial- to- 
mesenchymal transition

The endothelial- to- mesenchymal transition (EndMT) 
contributes substantially to inflammation- induced fi-
brosis, which is an important link in the pathogenesis 
of atherosclerosis.74– 76 UA can induce the EndMT in 
HUVECs and hyperuricemic rats by promoting oxida-
tive stress and glycocalyx shedding.77 Disruption to the 
endothelial glycocalyx, which is associated with inflam-
mation, can increase vascular permeability and promote 
leukocyte and platelet adhesion to ECs,78– 80 probably 
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playing an important role in atherosclerosis. Overall, HUA 
might drive the EndMT- mediated loss of endothelial func-
tion. To date, no studies have used atherosclerosis models 
to investigate the association of HUA with the EndMT.

3.4 | Endothelial insulin resistance

Insulin can stimulate ECs to release NO.81 However, UA 
inhibits insulin- induced eNOS activation and NO pro-
duction in ECs by impairing the PI3K/Akt and insulin 
signaling pathways, eventually leading to the develop-
ment of insulin resistance (IR).82,83 A meta- analysis sup-
ported this proposed mechanism, as SUA at an elevated 
level was found to be an independent predictor of vascu-
lar complications and mortality in type 2 diabetes mellitus 
(T2DM).84 Moreover, the association between SUA and 
the development of diabetic vasculopathy has been suffi-
ciently verified.85,86

3.5 | Procoagulant activity

The risk of deep vein thrombosis and pulmonary embo-
lism increased by gout has been established.87 HUA has 
been associated with increased risk of atherothrombotic 
events in patients with acute coronary syndrome (ACS) 
undergoing percutaneous coronary intervention (PCI).88 
ECs exert both anticoagulant and antithrombotic effects, 
because they can secrete factors that mediate platelet ag-
gregation and coagulation. However, when blood vessels 
are injured or exposed to proinflammatory cytokines, en-
dothelial homeostasis is imbalanced, shifting toward pro-
coagulant and prothrombotic effects.89

Cimmino et al.90 reported that UA at high levels 
enhanced the procoagulant function of tissue factor 
(TF) and decreased the expression of its physiological 
inhibitor TFPI in HUVECs, leading to the acquisition 
of a prothrombotic phenotype. Similarly, a shorten ac-
tivated partial thromboplastin time (APTT) and pro-
thrombin time (PT), a prolonged thrombin time (TT), 
and increased levels of fibrinogen and D- dimer have 
been observed in the serum of a HUA mouse model.91 
These effects may have been partially due to myocyte 
enhancer factor 2C (MEF2C)- dependent nuclear fac-
tor kappa B (NF- κB) activation in ECs, which is reg-
ulated by let- 7c and results in significant increases in 
the protein levels of plasminogen activator inhibitor 1 
(PAI- 1) and TF but marked reductions in tissue plas-
minogen activator (t- PA) expression.91 In addition, 
endothelial microparticles (MPs) participate in the 
mechanism underlying HUA- induced coagulation. Yu 
et al.67 demonstrated that UA at high levels can induce 

cytoskeletal structure disruption, transmembrane pro-
tein 16F (TMEM16F) activation, phosphatidylserine 
(PS) externalization, and MP shedding in HUVECs by 
increasing the levels of intracellular calcium and ROS. 
After MP shedding and PS externalization on ECs, 
binding sites are made available for the coagulation 
factors FXA and the prothrombinase complex, which 
activate the coagulation cascade, resulting in a marked 
increase in thrombin generation and enhanced endo-
thelial procoagulant activity (PCA).67 Collectively, 
these studies indicate that the interaction between 
ECs and coagulation- fibrinolytic systems is altered in 
HUA, increasing the risk of thromboembolic events. 
Therefore, HUA status needs to be considered in pa-
tients receiving antithrombotic therapies, including 
anticoagulants, antiplatelet agents, and thrombolytics.

3.6 | The inflammatory phenotype

The acquisition of the inflammatory phenotype by ECs in 
the atherosclerotic context leads to favorable conditions 
for leukocyte adhesion.92 Activated ECs release inflamma-
tory cytokines that attract lymphocytes and monocytes; 
simultaneously, enhanced expression of inflammatory 
adhesion molecules facilitates leukocyte adhesion and 
extravasation.93 High UA treatment elevates the levels of 
proinflammatory factors, such as tumor necrosis factor- 
alpha (TNF- α), interleukin (IL)- 1β, IL- 6, IL- 8, IL- 18, in-
tercellular cell adhesion molecule- 1 (ICAM- 1), vascular 
cell adhesion molecule- 1 (VCAM- 1), and monocyte che-
moattractant protein- 1 (MCP- 1) in the supernatants of 
cultured ECs,41,42,94– 96 suggesting that HUA can drive the 
progression of endothelial inflammation, which further 
causes ED (Figure 3). The following signaling pathways 
are suggested to be involved in HUA- induced endothelial 
inflammation.

3.6.1 | NF- κB cascade

Elevated UA levels are damage- associated molecular pat-
terns (DAMPs) that induce provoking NLRP3 inflammas-
ome activation in ECs.94,95 In this process, IL- 1β and IL- 18 
are cleaved by activated caspase- 1 and are then secreted 
into the extracellular space, amplifying the inflammatory 
response.94,95 Subsequently, NF- κB plays a key regulatory 
role in the endothelial inflammatory response.97 In addi-
tion, high mobility group protein 1 (HMGB1) combined 
with receptor for advanced glycation end products (RAGE) 
contributes to NF- κB activation in HUVECs treated with 
a high concentration of UA (Figure 3).66 Together, these 
findings strongly support the suggestion that NF- κB is a 
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potent target for HUA- induced endothelial inflammation. 
Indeed, NF- κB plays a crucial role in CVD, including ath-
erosclerosis.98 Further studies are required to investigate 
the pharmacological efficacy of targeting the NF- κB cas-
cade in patients with CVD- HUA comorbidities.

3.6.2 | Mitogen- activated protein 
kinase signaling

Mitogen- activated protein kinase (MAPK) signaling com-
posed of the extracellular signal- regulated kinase (ERK), 
c- Jun N- terminal kinase (JNK), and p38 MAPK pathways 
can be induced by various stimuli, including UA at high 
levels.51,96 In addition to NF- κB, p38 has been suggested to 
be an important mediator of endothelial inflammation be-
sides NF- κB.99 Although the phosphorylation levels of p38 
are markedly elevated in HUVECs treated with high lev-
els of UA,51 the precise regulatory relationships between 
p38 and HUA- induced endothelial inflammation and the 

mechanism by which p38 functions downstream remain 
to be explored (Figure 3).

3.6.3 | Hippo pathway

Physiologically, when the Hippo pathway is active, 
Yes- associated protein (YAP) and transcriptional coac-
tivator with PDZ- binding motif (TAZ) are phosphoryl-
ated, ubiquitinated, and degraded by proteasomes.100 
In contrast, inhibition of the Hippo pathway promotes 
dephosphorylated YAP/TAZ entry into the nucleus, 
thus regulating cell proliferation, differentiation, tissue 
homeostasis, and organ morphogenesis.101 Both soluble 
UA and monosodium urate (MSU) increase VCAM- 1 
and ICAM- 1 expression in HUVECs via the sterol regu-
latory element- binding protein 2 (SREBP2) transacti-
vation of YAP.102 These findings have been confirmed 
with a mouse model of HUA.102 Choi et al.103 showed 
that TNF- α induced VCAM- 1 expression in HUVECs via 

F I G U R E  3  Hyperuricemia- induced endothelial inflammation. The NF- κB, MAPK, and Hippo pathways may be involved in the 
mechanism underlying the acquisition of the inflammatory phenotype in endothelial cells exposed to hyperuricemia. ASC, apoptosis- 
associated speck- like protein- containing a CARD; HMGB1, high mobility group protein 1; HUA, hyperuricemia; ICAM- 1, intercellular 
cell adhesion molecule- 1; IL, interleukin; MAPK, mitogen- activated protein kinase; MEF2C, myocyte enhancer factor 2C; NF- κB, nuclear 
factor kappa B; NLRP3, nod- like receptor family pyrin domain- containing 3; RAGE, receptor for advanced glycation endproducts; SREBP2, 
sterol regulatory element- bindingprotein2; TAZ, transcriptional coactivator with PDZ- binding motif; TNF- α, tumor necrosis factor- alpha; 
VCAM- 1, vascular cell adhesion molecule- 1; YAP, Yes- associated protein.

 15306860, 2023, 7, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.202300393R

 by U
N

IV
. N

A
C

IO
N

A
L

 D
E

 SA
N

 L
U

IS U
N

SL
, W

iley O
nline L

ibrary on [17/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 14 |   WEI et al.

the enhancement of YAP/TAZ activity, which was in-
dependent of NF- κB signaling. Importantly, YAP/TAZ 
has been confirmed to be involved in several CVDs, in-
cluding atherosclerosis, myocardial infarction, and pul-
monary hypertension.104– 106 These studies suggest that 
the Hippo pathway may be a novel interventional target 
in patients with HUA- related CVD presenting the en-
dothelial inflammatory phenotype (Figure 3).

4  |  INTERVENTION STRATEGIES

To date, urate- lowering agents such as allopurinol, fe-
buxostat, and benzbromarone have been the stand-
ard treatments for HUA. However, the 2020 American 
College of Rheumatology guidelines for the manage-
ment of gout do not recommend pharmacological treat-
ments for CKD (chronic kidney disease)/CVD patients 
with asymptomatic HUA because the benefits of these 
urate- lowering agents may not outweigh the potential 
risk and cost of therapy.107– 109 Nonetheless, some stud-
ies have reported the effectiveness of pharmaceutical 
intervention for HUA- induced ED. For example, al-
lopurinol, probenecid, and epalrestat have been dem-
onstrated to partially abrogate the adverse effects of 
HUA on endothelial function (Table  1).44,51,77,83,90,96,110 
In addition, some natural and small- molecule com-
pounds protected ECs in the HUA context (Table  1). 
Specifically, betulin attenuated HUA-  or gout- induced 
EC inflammation via the inhibition of SREBP2.102 
Phloretin protected HUVECs against high UA- induced 
injury via the repression of inflammation and cellular 
UA uptake.42 Treatment with mangiferin (a natural 

glucosyl xanthone) not only reduced the level of UA 
but also increased endothelial function by elevating the 
NO secretion rate in rats and HUVECs exposed to high 
levels of UA.111 Either N- acetylcysteine or apocynin can 
increase NO bioavailability and reduce endothelial in-
flammation in high UA- treated HAECs.63 Furthermore, 
miR- 214 has been shown to alleviate apoptosis in UA- 
treated mouse aorta endothelial cells by targeting the 
COX- 2 (cyclooxygenase- 2)/PGE2 (prostaglandinE2) 
cascade.112 α- Lipoic acid inhibited EC apoptosis and en-
hanced NO production in both in vitro and in vivo HUA 
models by attenuating oxidant stress and activating Akt 
signaling.113 Fibroblast growth factor 21 (FGF21) atten-
uated ED induced by high levels of UA in HUVECs by 
activating Sirt1, which was manifested as the attenua-
tion of oxidative stress, ER stress, and inflammation.70 
Collectively, although not an official recommendation, 
optimal pharmacological treatments might be an impor-
tant approach to combat HUA- induced ED.

5  |  PARADOX

To date, the majority of the literature indicates that 
HUA contributes to ED, although the findings are con-
tradictory, possibly due to the cohorts of study subjects 
differing in age, race, sex, and treatment regimens.114,115 
Recently, a cross- sectional and retrospective study sug-
gested independent association between HUA and hy-
pertension only in men younger than 60 years of age.30 
However, a meta- analysis including 18 prospective co-
horts demonstrated an association between HUA and a 
high risk of incident hypertension in young individuals 

T A B L E  1  Mechanism of action involved in pharmacologic interventions for hyperuricemia- induced endothelial dysfunction.

Publication Agents Mechanism of action

Liang et al.44 Probenecid Anti- inflammation, anti- oxidation, and inhibiting uric acid 
reabsorptionTassone et al.83

Cimmino et al.90

Yang et al.96

Huang et al.51 Epalrestat Anti- oxidation by inhibiting NADPH oxidase activity

Ko et al.77 Allopurinol Anti- inflammation and decreasing uric acid production

Lu et al.110

Zhao et al.102 Betulin Anti- inflammation via inhibition of SREBP2

Liu et al.42 Phloretin Anti- inflammation and lowering GLUT9- mediated uric acid uptake

Yang et al.111 Mangiferin Lowering uric acid, anti- inflammation, and increasing NO production

Lee et al.63 N- acetylcysteine/apocynin Anti- oxidation by scavenging reactive oxygen species

Yang et al.112 miR- 214 Alleviating apoptosis by inhibiting COX- 2/PGE2 cascade

Zou et al.113 α- Lipoic Inhibiting oxidative stress and apoptosis by activating Akt pathway

Ouyang et al.70 FGF21 Attenuating stress responses and inflammation by activating Sirt1
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and women.116 Another meta- analysis of prospective co-
hort study data showed that the HUA- associated risk of 
CAD and all- cause mortality was greater in women than 
in men.28 Similarly, a retrospective cross- sectional anal-
ysis revealed that the association between elevated SUA 
and ED was evident only in women.117 These inconsist-
encies indicate that age and sex may impact the effects 
of UA on endothelial function. Notably, it has been re-
ported that urate- lowering therapy failed to reduce the 
incidence of major adverse cardiovascular events.31 
Complicating the ability to make clear conclusions, UA 
at high levels has even been shown to reduce the risk of 
all- cause and cardiovascular mortality in hemodialysis 
patients by ameliorating indoxyl sulfate- induced ED.118 
In addition to HUA, hypouricemia is a potential risk fac-
tor for CVD.119 These reports suggest that excessive over-
correction to lower the UA level may adversely influence 
the circulatory system. Therefore, revisiting the possible 

dual roles of UA in CVD might aid in the development of 
novel therapeutics for HUA- induced ED.

6  |  CONCLUSIONS AND FUTURE 
DIRECTIONS

HUA- induced ED is associated with decreases in the syn-
thesis and bioavailability of NO and increases in EC death, 
the EndMT, IR, PCA, and the rate of inflammatory pheno-
type acquisition (Figure 4). These impairments can lead 
to CVD. However, our understanding of the mechanisms 
underlying HUA- induced ED is limited for several rea-
sons. First, the in vitro ED model exposed to high levels of 
UA was largely established with HUVECs, which may not 
closely represent ED in artery vessels. Second, very few 
in vivo studies have been performed; therefore, interpre-
tation of the mechanisms underlying HUA- induced ED 

F I G U R E  4  Diagram showing the mechanism by which hyperuricemia causes endothelial dysfunction. Decreases in NO production, 
and increases in endothelial cell death, the endothelial- to- mesenchymal transition, endothelial insulin resistance, procoagulant activity, and 
acquisition of an inflammatory phenotype are major manifestations of endothelial dysfunction caused by hyperuricemia. ED, endothelial 
dysfunction; eNOS, endothelial nitric oxide synthase; HUA, hyperuricemia; ROS, reactive oxygen species.

 15306860, 2023, 7, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.202300393R

 by U
N

IV
. N

A
C

IO
N

A
L

 D
E

 SA
N

 L
U

IS U
N

SL
, W

iley O
nline L

ibrary on [17/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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in relevant disease models has been challenging. Third, 
numerous confounding factors have limited HUA treat-
ment in the clinic. For instance, age, sex, CKD, or another 
metabolic syndrome can interfere with the progression 
of HUA- associated cardiovascular comorbidities. Thus, 
further investigation into the mechanisms underlying the 
pathogenesis of HUA- induced ED is essential to develop 
novel and efficient therapies for the intervention of CVD 
with comorbid HUA.
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